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Many common datasets have both a large number of samples 
and a large number of features

MOTIVATION: WHY STUDY DYNAMICS IN HIGH DIMENSIONS?

DATASETS ARE OFTEN HIGH-DIMENSIONAL

•  CIFAR-10 (105 samples, 104 features) 

•  Imagenet (107 samples, 105 features)



Many common datasets have both a large number of samples 
and a large number of features

MOTIVATION: WHY STUDY DYNAMICS IN HIGH DIMENSIONS?

DATASETS ARE OFTEN HIGH-DIMENSIONAL

•  CIFAR-10 (105 samples, 104 features) 

•  Imagenet (107 samples, 105 features)

• Speech (high frequency, large dynamic range) 

• Video (high frame rates, high resolution) 

• DNA sequences (large number of base pairs)

Many modalities are intrinsically high-dimensional:



MOTIVATION: HIGH-DIMENSIONAL MODELS

DEEP LEARNING MODELS ARE HIGH-DIMENSIONAL
Deep learning models employ large numbers of parameters. 
At least two practically-relevant high-dimensional regimes:

1. Linearly overparameterized (� ) 

2. Quadratically overparameterized (� )

p ∼ m

nl ∼ m

Examples:

FC/
CIFAR-10 103 104 106

ResNet/
ImageNet 103 107 108

nl m p
Width # Samples # Parameters



MOTIVATION: HIGH-DIMENSIONAL MODELS

HIGH-DIMENSIONAL SCALING LIMITS 
We will focus on the following high-dimensional asymptotics of 
zero and one hidden-layer networks:

1. Dataset size �  

2. Input dimensionality �  

3. Hidden-layer size �

m → ∞
n0 → ∞

n1 → ∞

with the ratios �   and  �   held constantϕ =
n0

m
ψ =

n0

n1



INTRODUCTION: MARCHENKO-PASTUR DISTRIBUTION

MARCHENKO-PASTUR DISTRIBUTION
In the low-dimensional (standard) regime, certain statistics may 
be simple:

• Dataset � ,  �   

• For �  finite, infinite samples (� ), �

X ∈ ℝn0×m Xij ∼ 𝒩(0,1)

n0 m → ∞ 1
m XXT → In0



INTRODUCTION: MARCHENKO-PASTUR DISTRIBUTION

MARCHENKO-PASTUR DISTRIBUTION
In the low-dimensional (standard) regime, certain statistics may 
be simple:

In the high-dimensional regime, spectrum can be non-trivial

• Dataset � ,  �   

• For �  finite, infinite samples (� ), �

X ∈ ℝn0×m Xij ∼ 𝒩(0,1)

n0 m → ∞ 1
m XXT → In0

• �  as �  

• �

n0/m → ϕ n0, m → ∞

ρ(
1
m

XXT) → MP(ϕ) ρ(λ)

ϕ = 1

ϕ = 1/2

ϕ = 1/5

ϕ = 1/10

ϕ = 1/20
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CASE STUDY: LINEAR REGRESSION

LINEAR REGRESSION
Consider one of the simplest possible learning problems, linear 
ridge regression with iid Gaussian inputs and targets.

    �  ,       �  ,  �L = ∥WX − Y∥2
F + γ∥W∥2

F Xij ∼ 𝒩(0,1) Yij ∼ 𝒩(0,1)
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    �       = tr[XT XQYTYQXT X] − 2tr[XT XQYTY] + tr[YTY]



CASE STUDY: LINEAR REGRESSION

LINEAR REGRESSION
Consider one of the simplest possible learning problems, linear 
ridge regression with iid Gaussian inputs and targets.

    �  ,       �  ,  �L = ∥WX − Y∥2
F + γ∥W∥2

F Xij ∼ 𝒩(0,1) Yij ∼ 𝒩(0,1)

    �  ,       �  W* = YQXT Q = (XT X + γI)−1

    �       Etrain = ∥W*X − Y∥2
F = tr[(YQXT X − Y )T(YQXT X − Y )]

    �       = tr[XT XQYTYQXT X] − 2tr[XT XQYTY] + tr[YTY]
    �       = tr[XT XQ2XT X] − 2tr[XT XQ] + 1
    �       = γ2tr[Q2]
    �       = − γ2∂γtr[Q]

XT X = Q−1 − γI



CASE STUDY: LINEAR REGRESSION

RESOLVENT AND STIELTJES TRANSFORM
The training error depends on the trace of the resolvent �  Q

    �       Etrain = − γ2∂γtr[Q] Q = (XT X + γI)−1

This trace �  is known as the Cauchy transform � ,tr[Q] G : ℂ+ → ℂ+
    

�G(z) = − tr[(XT X − zI)−1] = ∫
1

z − λ
ρXT X(λ)dλ



CASE STUDY: LINEAR REGRESSION

RESOLVENT AND STIELTJES TRANSFORM
The training error depends on the trace of the resolvent �  Q

    �       Etrain = − γ2∂γtr[Q] Q = (XT X + γI)−1

This trace �  is known as the Cauchy transform � ,tr[Q] G : ℂ+ → ℂ+
    

�G(z) = − tr[(XT X − zI)−1] = ∫
1

z − λ
ρXT X(λ)dλ

=
1 − (1 − z)ϕ + (1 − (1 − z)ϕ)2 − 4zϕ

2z
ϕ =

n0

m



CASE STUDY: LINEAR REGRESSION

HIGH-DIMENSIONAL TRAINING ERROR

ϕ =
n0

m

    

�       Etrain =
(γϕ + ϕ − 1)2 + 4γϕ(ϕ(γϕ + γ + ϕ − 2) + 1)

2ϕ(γ((γ + 2)ϕ + 2) + ϕ − 2) + 2
+

1 − ϕ
2
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CASE STUDY: LINEAR REGRESSION

GRADIENT DESCENT
Let’s optimize the regression weights using gradient descent.

    �  ,       �  ,  �L = ∥WX − Y∥2
F + γ∥W∥2

F Xij ∼ 𝒩(0,1) Yij ∼ 𝒩(0,1)

    �   W(t) = YQ(t)XT

K = XT X + γI
Q(t) = K−1(I − (I − 2ηK)t)



CASE STUDY: LINEAR REGRESSION

GRADIENT DESCENT
Let’s optimize the regression weights using gradient descent.

    �  ,       �  ,  �L = ∥WX − Y∥2
F + γ∥W∥2

F Xij ∼ 𝒩(0,1) Yij ∼ 𝒩(0,1)

    �   W(t) = YQ(t)XT

K = XT X + γI
Q(t) = K−1(I − (I − 2ηK)t)

Etrain(t) = tr[XT XQ(t)2XT X] − 2tr[XT XQ(t)] + 1

= tr[(K − γI)2Q(t)2] − 2tr[(K − γI)Q(t)] + 1

= tr[K−2((K − γI)(I − 2ηK)t + γI)]

Now the training error has a simple time-dependent expression:



CASE STUDY: LINEAR REGRESSION

TIME-DEPENDENCE THROUGH CAUCHY’S FORMULA

Recalling Cauchy’s integral formula for matrix functions,

f(A) =
1

2πi ∫C
f(z)(A − zI)−1dz

Taking the trace of this equation gives,

Etrain(t) = tr[ f(K)] f(K) = K−2((K − γI)(I − 2ηK)t + γI)2

Etrain(t) =
1

2πi ∫C

((z − γ)(1 − 2ηz)t + γ)2

z2
G(z − γ)dz



CASE STUDY: LINEAR REGRESSION

TIME-DEPENDENCE THROUGH CAUCHY’S FORMULA

Etrain(t) =
1

2πi ∫C

((z − γ)(1 − 2ηz)t + γ)2

z2
G(z − γ)dz

E t
ra
in
(
t)
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LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

KERNEL RIDGE REGRESSION
Consider random nonlinear features �  F = f(W1X)

    �  ,       �  L = ∥WF − Y∥2
F + γ∥W∥2

F Xij, Yij, [W1]ij ∼ 𝒩(0,1)

    �   W(t) = YQ(t)FT

K = FTF + γI
Q(t) = K−1(I − (I − 2ηK)t)



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

KERNEL RIDGE REGRESSION
Consider random nonlinear features �  F = f(W1X)

    �  ,       �  L = ∥WF − Y∥2
F + γ∥W∥2

F Xij, Yij, [W1]ij ∼ 𝒩(0,1)

    �   W(t) = YQ(t)FT

K = FTF + γI
Q(t) = K−1(I − (I − 2ηK)t)

Identical to linear regression, but �XT X → FTF

Etrain(t) =
1

2πi ∫C

((z − γ)(1 − 2ηz)t + γ)2

z2
G(z − γ)dz

    
�G(z) = − tr[(FTF − zI)−1] = ∫

1
z − λ

ρFTF(λ)dλ



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF  F = f(WX)
1. Naive option: method of moments

G(z) = tr[(zI − FTF)−1] =
1
n1

∑k
1

zk+1
𝔼 tr[(FTF)k]



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF  F = f(WX)
1. Naive option: method of moments

G(z) = tr[(zI − FTF)−1] =
1
n1

∑k
1

zk+1
𝔼 tr[(FTF)k]

𝔼
1
n1

tr[(FTF)k] =
1
n1

1
mk

𝔼[ ∑
i1, …, ik ∈ [n1]
μ1, …, μk ∈ [m]

Fi1μ1
Fi2μ1

Fi2μ2
Fi3μ2

⋯Fikμk
Fi1μk]

| {z }

Can be evaluated to leading order



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF  F = f(WX)
2. Better option: “strong universality” + free probability

i) ”Strong universality” — can replace �  by 
another matrix that has the same second moments

F = f(WX)



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF  F = f(WX)
2. Better option: “strong universality” + free probability

i) ”Strong universality” — can replace �  by 
another matrix that has the same second moments

F = f(WX)

F ≃ Flin ≡ ζWX + η − ζ A

η = ∫ dz
e−z2/2

2π
f(σwσxz)2 ζ = [σwσx ∫ dz

e−z2/2

2π
f′�(σwσxz)]

2

Aij ∼ 𝒩(0,1)



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF  F = f(WX)
2. Better option: “strong universality” + free probability

ii) Free probability — algebraic formalism that allows 
adding and multiplying “freely independent” 
noncommutative random variables

F ≃ Flin ≡ ζWX + η − ζ A

If �  are free then the Cauchy transform of F can 
be obtained from the Cauchy transforms of � .

A, W, X
A, W, X



FREE PROBABILITY

KERNEL RIDGE REGRESSION
The linearized feature matrix �  consists of 
freely independent matrices � . Can therefore compute 
Cauchy transform �  using R-transform and S-transform.

Flin ≡ ζWX + η − ζ A
W, X, A

G



FREE PROBABILITY

KERNEL RIDGE REGRESSION
The linearized feature matrix �  consists of 
freely independent matrices � . Can therefore compute 
Cauchy transform �  using R-transform and S-transform.

Flin ≡ ζWX + η − ζ A
W, X, A

G

{GX, GW} → SWX → GWX → RWX

GA → RA

RWX+A → GFTF



FREE PROBABILITY

KERNEL RIDGE REGRESSION

Etrain(t) =
1

2πi ∫C

((z − γ)(1 − 2ηz)t + γ)2

z2
GFTF(z − γ)dz

The linearized feature matrix �  consists of 
freely independent matrices � . Can therefore compute 
Cauchy transform �  using R-transform and S-transform.

Flin ≡ ζWX + η − ζ A
W, X, A

G

{GX, GW} → SWX → GWX → RWX

GA → RA

RWX+A → GFTF



FREE PROBABILITY

KERNEL RIDGE REGRESSION

Etrain(t) =
1

2πi ∫C

((z − γ)(1 − 2ηz)t + γ)2

z2
GFTF(z − γ)dz

The linearized feature matrix �  consists of 
freely independent matrices � . Can therefore compute 
Cauchy transform �  using R-transform and S-transform.

Flin ≡ ζWX + η − ζ A
W, X, A

G

{GX, GW} → SWX → GWX → RWX

GA → RA

RWX+A → GFTF

Does not require Gaussian X! 
Only need spectrum of X.



FREE PROBABILITY

KERNEL RIDGE REGRESSION

Etrain(t) =
1

2πi ∫C

((z − γ)(1 − 2ηz)t + γ)2

z2
GFTF(z − γ)dz

E t
ra
in
(
t)
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LINEARIZATION PT 2: THE LINEAR PENCIL

GENERALIZATION ERROR
To discuss generalization, need a non-trivial model for 
the joint �  distribution. (X, Y )

For concreteness, consider the student-teacher setup, 
where �  for fixed, random weights.Y = V2g(V1X)
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GENERALIZATION ERROR
To discuss generalization, need a non-trivial model for 
the joint �  distribution. (X, Y )

For concreteness, consider the student-teacher setup, 
where �  for fixed, random weights.Y = V2g(V1X)

As we saw for � , in high dimensions �  can also be 
replaced with a linearized version having the correct 
second moments,

F Y

Y ≃ Ylin ≡ ζgV2V1X + ηg − ζg V2B Bij ∼ 𝒩(0,1)

ηg = ∫ dz
e−z2/2

2π
g(σwσxz)2 ζg = [σwσx ∫ dz

e−z2/2

2π
g′�(σwσxz)]

2
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Y = V2g(V1X) F = f(W1X)
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STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS
    �  ,       L = ∥WF − Y∥2

F + γ∥W∥2
F

    �  ,       �  W* = YQFT Q = (FTF + γI)−1

    �       Etest = 𝔼x̃ ∥W*f̃ − ỹ∥2
F = 𝔼x̃ tr[(YQFTf̃ − ỹ)T(YQFTf̃ − ỹ)]

    �       = 𝔼x̃ tr[ f̃ TFQYTYQFTf̃ ] − 2𝔼x̃ tr[ f̃ TFQYTỹ] + 𝔼x̃ tr[ỹT ỹ]

Y = V2g(V1X) F = f(W1X)

Consider an unseen test point �, with random features 
�  and targets � .

x̃
f̃ = f(W1x̃) ỹ = V2g(V1x̃)



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS
    �  ,       L = ∥WF − Y∥2

F + γ∥W∥2
F

    �  ,       �  W* = YQFT Q = (FTF + γI)−1

    �       Etest = 𝔼x̃ ∥W*f̃ − ỹ∥2
F = 𝔼x̃ tr[(YQFTf̃ − ỹ)T(YQFTf̃ − ỹ)]

    �       = 𝔼x̃ tr[ f̃ TFQYTYQFTf̃ ] − 2𝔼x̃ tr[ f̃ TFQYTỹ] + 𝔼x̃ tr[ỹT ỹ]

Y = V2g(V1X)

Y → Ylin ≡ ζgV2V1X + ηg − ζg V2B

ỹ → ỹlin ≡ ζgV2V1x̃ + ηg − ζg V2b̃

F → Flin ≡ ζW1X + η − ζ A

f̃ → f̃ lin ≡ ζW1x̃ + η − ζ ã

F = f(W1X)

Consider an unseen test point �, with random features 
�  and targets � .

x̃
f̃ = f(W1x̃) ỹ = V2g(V1x̃)

Now, utilize “strong universality" to apply the linearization,



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

    �       Etest = 𝔼x̃ tr[ f̃ TFQYTYQFTf̃ ] − 2𝔼x̃ tr[ f̃ TFQYTỹ] + 𝔼x̃ tr[ỹT ỹ]

Y → Ylin ≡ ζgV2V1X + ηg − ζg V2B

ỹ → ỹlin ≡ ζgV2V1x̃ + ηg − ζg V2b̃

F → Flin ≡ ζW1X + η − ζ A

f̃ → f̃ lin ≡ ζW1x̃ + η − ζ ã

After applying the linearization,

The expectations over �  are trivial because V1, V2, B, b̃, ã

Q → ((Flin)TFlin + γI)−1 = (( ζW1X + η − ζ A)T( ζW1X + η − ζ A))−1

depends only on � .W1, X, A



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS
After applying linearization and performing the trivial 
expectations, the result can be written as 

Etest = ∑i tr[RiQSiQ]+ ∑i tr[TiQ]

where �  are low-order polynomials in � . Ri, Si, Ti W1, X, A
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where �  are low-order polynomials in � . Ri, Si, Ti W1, X, A

Q: How to evaluate the trace of a rational function of 
random matrices?



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS
After applying linearization and performing the trivial 
expectations, the result can be written as 

Etest = ∑i tr[RiQSiQ]+ ∑i tr[TiQ]

where �  are low-order polynomials in � . Ri, Si, Ti W1, X, A

Q: How to evaluate the trace of a rational function of 
random matrices?

A: Linearization + operator-valued free probability



LINEARIZATION PT 2: THE LINEAR PENCIL

RATIONAL FUNCTIONS AS BLOCK MATRIX OPERATIONS
Any rational function of non-commutative variables can be 
represented in terms of the inverse of a matrix whose 
entries are linear in the variables.

    �  ,              �R(x1, …, xk) = uTM−1v M = M0+ ∑i Mixi

Constructive proof by induction: manifestly true for � , 
and higher � follow if the representation is closed under 
addition, multiplication, and inversion. These follow from 
Schur complement formula.

k = 1
k

This representation is called the linear pencil.



LINEARIZATION PT 2: THE LINEAR PENCIL

EXAMPLE OF LINEAR PENCIL

Consider the resolvent as a function in � ,W, X, A

�Q = ((Flin)TFlin − zI)−1 = ((WX + A)T(WX + A) − zI)−1

�= uTM−1v = (I 0 0 0)

−zI AT XT 0
−A I 0 −W
0 −WT I 0

−X 0 0 I

−1
I
0
0
0



LINEARIZATION PT 2: THE LINEAR PENCIL

EXAMPLE OF LINEAR PENCIL

Consider the resolvent as a function in � ,W, X, A

�Q = ((Flin)TFlin − zI)−1 = ((WX + A)T(WX + A) − zI)−1

�= uTM−1v = (I 0 0 0)

−zI AT XT 0
−A I 0 −W
0 −WT I 0

−X 0 0 I

−1
I
0
0
0

�  is linear in the � :M W, X, A

�M =

−zI 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

+
0 0 XT 0
0 0 0 0
0 0 0 0

−X 0 0 0

+

0 0 0 0
0 0 0 −W
0 −WT 0 0
0 0 0 0

+
0 AT 0 0

−A 0 0 0
0 0 0 0
0 0 0 0

but the additive terms are not free, owing to the block structure.



LINEARIZATION PT 2: THE LINEAR PENCIL

EXAMPLE OF LINEAR PENCIL

�M =

−z 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ I +

0 0 0 0
0 0 0 0
0 0 0 0

−1 0 0 0

⊗ X +

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⊗ XT

�+
0 0 0 0
0 0 0 −1
0 0 0 0
0 0 0 0

⊗ W +

0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0

⊗ WT +

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⊗ A +

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⊗ AT

However, we can view �  as a linear function of the �  with 
coefficients in �

M W, X, A
M4(ℂ)

and then freeness can be salvaged, but one must account for the 
non-commutativity of the coefficients in �M4(ℂ)



LINEARIZATION PT 2: THE LINEAR PENCIL

GENERALIZATION ERROR
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parameters are trained, �N(x; θ = {W1, W2}) = W2 f(W1x)

As the width grows, parameters move less during the course of 
gradient descent, i.e. �θ(t) ≈ θ(0)
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LINEARIZATION PT 3: NEURAL TANGENT KERNEL

FROM KERNELS TO NEURAL NETWORKS AND BACK AGAIN
Now consider a single-layer neural network in which all the 
parameters are trained, �N(x; θ = {W1, W2}) = W2 f(W1x)

As the width grows, parameters move less during the course of 
gradient descent, i.e. �θ(t) ≈ θ(0)

This motivates a linear approximation

N(x; θ(t)) ≈ N0 + J0(θ(t) − θ(0))

The dynamics are determined by the Neural Tangent Kernel

Θ = JT
0 J0 = Θ1 + Θ2 = (F′ �)TDW2

F′� ⊙ XT X + FTF F′� = f′�(W1X)



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

NEURAL TANGENT KERNEL
The offset �  contributes unnecessary variance. Can set �  
by subtracting two copies of the model with same initialization

N0 N0 = 0

NVR(x; {θ1, θ2}) =
1

2
(N(x; θ1) − N(x; θ2)) θ1(0) = θ2(0)

NVR
0 = 0, ΘVR = Θ



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

NEURAL TANGENT KERNEL: SECOND-LAYER KERNEL
The component of the kernel from the second layer is the same 
random features kernel studied before, �Θ2 = K = FTF

It has non-trivial random matrix behavior in the high-
dimensional limit when �n0 ∼ n1 ∼ m
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NEURAL TANGENT KERNEL: FIRST-LAYER KERNEL
The first layer kernel has a Hadamard product structure, 
� . It has two non-trivial scaling regimes:Θ1 = (F′�)TDW2

F′ � ⊙ XT X

1. Linearly overparameterized (� ) 

• Fluctations of �  are important 

• � eigenvalues of �  and �  of �   

2. Quadratically overparameterized (� ) 

• Only the mean of �  is important 

•  �

n0n1 ∼ m

(F′�)TDW2
F′ �

n 𝒪(n) n2 𝒪(1)

nl ∼ m

(F′�)TDW2
F′ �

Θ1 ≃ Θlin
1 = c1I + c2XT X
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QUADRATIC OVERPARAMETERIZATION
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TRIPLE DESCENT?



EXTRA SLIDES



FREE PROBABILITY

CUMULANTS AND CLASSICAL INDEPENDENCE
The cumulant generating function �  generates connected 
correlation functions via the relation

K

�K(t1, …, tn) = log 𝔼 e ∑n
i=1 tiXi

The cumulants � are defined by the moments via a sum 
over partitions �:

κ
π
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�K(t1, …, tn) = log 𝔼 e ∑n
i=1 tiXi

The cumulants � are defined by the moments via a sum 
over partitions �:

κ
π

�𝔼[X1⋯Xn] = ∑
π

κπ[X1, …, Xn] �κπ[X1, …, Xn] = ∏
B∈π

κ[Xi : i ∈ B]

For example,

n=2:    �𝔼[X1X2] = κ[X1X2] + κ[X1]κ[X2]

n=1:    �𝔼[X1] = κ[X1]



FREE PROBABILITY

CUMULANTS AND CLASSICAL INDEPENDENCE
n=3:   �   
                                     �
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The mixed cumulants vanish for independent random 
variables
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FREE PROBABILITY

FREE CUMULANTS AND FREE INDEPENDENCE
Free cumulants: sum over non-crossing partitions � :π ∈ NC(n)

�𝔼[X1⋯Xn] = ∑
π∈NC(n)

κπ[X1, …, Xn] �κπ[X1, …, Xn] = ∏
B∈π

κ[Xi : i ∈ B]

For example, at � , the free cumulants obeyn = 4
n=4:    �                                                  
                   �  
                   �  
                   �  
                   �

𝔼[X1X2X3X4] = κ[X1X2X3X4] + κ[X1X2X3]κ[X4] + κ[X1X2X4]κ[X3]
+κ[X1X3X4]κ[X2] + κ[X2X3X4]κ[X1] + κ[X1X2]κ[X3X4]
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+κ[X1X3]κ[X2]κ[X4] + κ[X1X2]κ[X3]κ[X4] + κ[X1]κ[X2]κ[X2]κ[X3]

The mixed free cumulants vanish for freely independent 
random variables.
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FREE PROBABILITY

R-TRANSFORM AND S-TRANSFORM
Given free random matrices �  and � , can add and multiply using 
auxiliary objects: the R-transform and the S-transform

A B

R-transform:   �zG(z) = 1 + R(G(z))G(z)

S-transform:   �G(z) = S(zG(z) − 1)(z(G(z) − 1))

ρB(λ) → GB(z) → RB

ρA(λ) → GA(z) → RA
RA + RB = RA+B → GA+B(z) → ρA+B(λ)

ρB(λ) → GB(z) → SB

ρA(λ) → GA(z) → SA
SASB = SAB → GAB(z) → ρAB(λ)
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Basic idea: perform as much of the calculation as possible in 
�  before projecting down to � .Md(ℂ) ℂ

The operator-valued Cauchy transform �G : Md(ℂ)+ → Md(ℂ)+
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    �       G(b) = (id ⊗ tr) [(b ⊗ I − Mx ⊗ X)−1]
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�  True for the linear pencils needed for the test error⇒
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