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MOTIVATION: WHY STUDY DYNAMICS IN HIGH DIMENSIONS?

DATASETS ARE OFTEN HIGH-DIMENSIONAL

Many common datasets have both a large number of samples
and a large number of features

e CIFAR-10 (105 samples, 104 features)

 Imagenet (107 samples, 105 features)



MOTIVATION: WHY STUDY DYNAMICS IN HIGH DIMENSIONS?

DATASETS ARE OFTEN HIGH-DIMENSIONAL

Many common datasets have both a large number of samples
and a large number of features

e CIFAR-10 (105 samples, 104 features)
 Imagenet (107 samples, 105 features)

Many modalities are intrinsically high-dimensional:

e Speech (high frequency, large dynamic range)
e Video (high frame rates, high resolution)

e DNA sequences (large number of base pairs)



MOTIVATION: HIGH-DIMENSIONAL MODELS

DEEP LEARNING MODELS ARE HIGH-DIMENSIONAL

Deep learning models employ large numbers of parameters.
At least two practically-relevant high-dimensional regimes:

1. Linearly overparameterized (p ~ m)

2. Quadratically overparameterized (n;, ~ m)

Examplesz Width # Samples | # Parameters
n m p

FC/
CIFAR-10 10° 104 10¢

ResNet/ 103 107 108

ImageNet




MOTIVATION: HIGH-DIMENSIONAL MODELS

HIGH-DIMENSIONAL SCALING LIMITS

We will focus on the following high-dimensional asymptotics of
zero and one hidden-layer networks:

1. Datasetsize m — oo

2. Input dimensionality ny, = oo

3. Hidden-layer size n; — oo

) )
with the ratios ¢ = — and WY = — held constant
m 1y



INTRODUCTION: MARCHENKO-PASTUR DISTRIBUTION

MARCHENKO-PASTUR DISTRIBUTION

In the low-dimensional (standard) regime, certain statistics may
be simple:

e Dataset X € R0, X;; ~ A(0,1)

e For n finite, infinite samples (m — o), %XXT - I,



INTRODUCTION: MARCHENKO-PASTUR DISTRIBUTION

MARCHENKO-PASTUR DISTRIBUTION

In the low-dimensional (standard) regime, certain statistics may
be simple:

e Dataset X € R0, X;; ~ A(0,1)

e For n finite, infinite samples (m — o), %XXT - I,

In the high-dimensional regime, spectrum can be non-trivial

2.01
® ng/m — ¢ as ny, m — oo |

| |
o P(—XX") - MP(¢)
m
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CASE STUDY: LINEAR REGRESSION

LINEAR REGRESSION

Consider one of the simplest possible learning problems, linear
ridge regression with iid Gaussian inputs and targets.

L=|WX-Ylz+7IWl7, X;~#0]1), Y; ~H(0,1)
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CASE STUDY: LINEAR REGRESSION

LINEAR REGRESSION

Consider one of the simplest possible learning problems, linear
ridge regression with iid Gaussian inputs and targets.

L=|IWX-Ylz+7IWlz:,  X;~¥O1), Y~ 40,1
wx=Y0X", O=X'X+yH!

= ||W*X = Y||% = tr[(YOX'X — V) (YOX' X - V)]

= [ X' XOY'YOX"X] - 2tr[ X" XQY'Y] + tr[Y'Y]

= tr[ X' X0’ X' X] - 2tr[ X' XO] + 1

= v’tr[Q?] XTX = Q' —yI

= —7°0,11[Q]

L,

rain




CASE STUDY: LINEAR REGRESSION

RESOLVENT AND STIELTJES TRANSFORM

The training error depends on the trace of the resolvent 0
Eirain = — 70,1110 0=X"X+yD)"

This trace tr[Q] is known as the Cauchy transform G : C* — CT,

C 1
G@) = =1 X"X = 2Dy = | —pyry(d)d2




CASE STUDY: LINEAR REGRESSION

RESOLVENT AND STIELTJES TRANSFORM

The training error depends on the trace of the resolvent 0

Etmin — = yzaytr[Q] = (XTX + 7])_1
This trace tr[Q] is known as the Cauchy transform G : C* — CT,
C ]
G(z) = —tr{(X'X —z)™'] = }LPXTX(/DCM
J & —
:1—(1—z)¢+\/(1—(1—z)¢)2—4z¢ polt

27



CASE STUDY: LINEAR REGRESSION

HIGH-DIMENSIONAL TRAINING ERROR

Vb +d— 102+ 4@ +r+d-2+1) | _

E,. . = + —

20((7 +2)p +2) + p —2) + 2




CASE STUDY: LINEAR REGRESSION

GRADIENT DESCENT

Let’s optimize the regression weights using gradient descent.

L=|WX=Y|2+7WI2, X, ~H0,1), Y~ #0,1)

O = K~'(I = (I - 27K)")

W(t) = YO()X!
K=X"'X+yI



CASE STUDY: LINEAR REGRESSION

GRADIENT DESCENT

Let’s optimize the regression weights using gradient descent.

L=|WX=Y|2+7WI2, X, ~H0,1), Y~ #0,1)

W(t) = YOQ()XT Q) = K~'(I - (I — 27K)")
K=X"X+7l

Now the training error has a simple time-dependent expression:

E_. () =tr[X'X00)* X' X] - 2tr[ X XO(1)] + 1
= tr[(K — y1)*Q(0)*] — 2tr[(K — yD)Q(1)] + 1
= tr[K~*((K — y[)I — 27K)" + yI)]




CASE STUDY: LINEAR REGRESSION

TIME-DEPENDENCE THROUGH CAUCHY'S FORMULA

Erain(t) = trl f(K)] fIK) = K=((K — yD)(I = 2nK)" + yI)*

Recalling Cauchy’s integral formula for matrix functions,

f(A) = LJ f(DA =z~ dz
C

27l

Taking the trace of this equation gives,

1 [ (z=p)(d =2n2)" +7y)
Etmin(t) — 2_]” ‘[C Z2

G(z — y)dz



CASE STUDY: LINEAR REGRESSION

TIME-DEPENDENCE THROUGH CAUCHY'S FORMULA

|
Etmin(t) — 2_]”[
C

10:j
(18}
— (16}
5 oaf

0.2

(z=p)(1 = 2n2)" +y)*

Z2

Linear Regression, y = 0.1

R
10

t

L I R
50 100

L I R
500 1000

G(z — y)dz



OUTLINE

OUTLINE

. Motivation / Introduction
. Case Study: Linear Regression
. Linearization pt 1: High-Dimensional Kernels

. Linearization pt 2: The Linear Pencil

o B W N -

. Linearization pt 3: Neural Tangent Kernel



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

KERNEL RIDGE REGRESSION

Consider random nonlinear features F' = f(W,X)

L= ||WF=Y|z+7IWlg, [Wi1;; ~ #(0,1)

Xijs X
O(t) = K~'(I = (I = 2nK)")

W(t) = YO()F!
K=F'F+yl



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

KERNEL RIDGE REGRESSION

Consider random nonlinear features F' = f(W,X)

L= ||WF=Y|z+7IWlg, [Wi1;; ~ #(0,1)

l]’ l]’

O = K~'(I = (I - 27K)")

W(t) = YO()F!
K=F'F+yl

ldentical to linear regression, but X'X - F'F

_ _ t 2
1 [ ((z =y —2nz) +7) Gz — 7)dz
C

tmm( ) 271_1- Z2

1

G(z) = —tr[(F'F - zI)™ '] = J
7 —



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF /' = f(WX)

1. Naive option: method of moments

G = il - FTFY " = — ¥, ——Erl(FTF)"
nl <



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF /' = f(WX)

1. Naive option: method of moments

G(z) =trl(zI — F'F)™'] = izk

[Eitr[(FTF)k] _ !

n

n; mk

E

L il’ ...,ik = [nl]

E tr[(FTF)"]

n, <k gkt

2 Fi1ﬂ1Fi2ﬂ1Fi2ﬂ2Fi3/42 . FikﬂkFilﬂk

His -5 fy € [M]

-~

Can be evaluated to leading order



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF /' = f(WX)

2. Better option: “strong universality” + free probability

i) "Strong universality” — can replace F = f(WX) by
another matrix that has the same second moments



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF /' = f(WX)

2. Better option: “strong universality” + free probability

i) "Strong universality” — can replace F = f(WX) by

another matrix that has the same second moments

F:Fli”E\/ZWX+\/77—Z:A

—72/2

%
= Ja’z
27

f(6,0,2)°

0,0, J dz

)
62/2

Ner:

f'(6,0.2)

Ay ~ N(0,1)



LINEARIZATION PT 1: HIGH-DIMENSIONAL KERNELS

CAUCHY TRANSFORM OF /' = f(WX)

2. Better option: “strong universality” + free probability

ii) Free probability — algebraic formalism that allows
adding and multiplying “freely independent”
noncommutative random variables

It A, W, X are free then the Cauchy transform of F can
be obtained from the Cauchy transforms of A, W, X.

F~Fm=/(WX++/n—CA



FREE PROBABILITY

KERNEL RIDGE REGRESSION

The linearized feature matrix F/"* = \/ZWX + 1/ — { A consists of

freely independent matrices W, X, A. Can therefore compute
Cauchy transform G using R-transform and S-transform.
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KERNEL RIDGE REGRESSION

The linearized feature matrix F/"* = \/ZWX + 1/ — { A consists of

freely independent matrices W, X, A. Can therefore compute
Cauchy transform G using R-transform and S-transform.

{Gx, Gy} = Syx = Gyx — Ryx

Ryxia = Gprp
G, = R, 7

Grrp(z — y)dz

1 [ (=9 =212 +7)
Etrain(t) - 2_7” "C Z2



FREE PROBABILITY

KERNEL RIDGE REGRESSION

The linearized feature matrix F/"* = \/ZWX + 1/ — { A consists of
freely independent matrices W, X, A. Can therefore compute

Cauchy transform G using R-transform and S-transform.

{Gx, Gy} = Syx = Gyx — Ryx

/

Does not require Gaussian X!
Only need spectrum of X.

Etrain(t) - 5 .

[ (z= 7)1 = 2n2)" +y)*
C

Ryxia = Gprp
G,— R, —

> Grr(z — y)dz



FREE PROBABILITY

KERNEL RIDGE REGRESSION

1 [ (z=p =252 +7p)°
Etmin(t) — 2_]” JC Z2

Grrp(z — y)dz

o] 1% , =4 0 Kernel Regression, y = 0.1, ¢ =1 0 Kernel Regression, y =0.1, ¢ =1/4
\ i \ 0s]
¢ = 0.6 [ 06
e 0.4+ 04l
— ¢= : :
9= 0.2 02+
N | 500 1000 1 5 10 50 100 500 1000 1 5 10 50 100 500 1000
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LINEARIZATION PT 2: THE LINEAR PENCIL

GENERALIZATION ERROR

To discuss generalization, need a non-trivial model for
the joint (X, Y) distribution.

For concreteness, consider the student-teacher setup,
where Y = V,g(V,X) for fixed, random weights.
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GENERALIZATION ERROR

To discuss generalization, need a non-trivial model for

the joint (X, Y) distribution.

For concreteness, consider the student-teacher setup,

where Y = V,g(V,X) for fixed, random weights.

As we saw for F), in high dimensions Y can also be

replaced with a linearized version having the correct

second moments,

VY= JE VX fn, = £, VaB
/2 I

o7
My = sz

\/ﬂ g(O'WGXZ)Z Cg —

0,0, [ dz

P —7°/2

Ner:

g'(0,,0,2)

B




LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

L=|WF=Ylz+7IWlz, Y=VeVX) F=fWX)

W+ =YOF!', O=F'F+ylH)™!



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

L=|WF=Ylz+7IWlz, Y=VeVX) F=fWX)

W* =YOF", Q=EF'F+yDH)™!

Consider an unseen test point X, with random features

~/

f = f(W,%) and targets § = V,g(V,%).

E,, = E. |W¥f—$||% = E.tr[(YOFTf — )T(YOFTf — )]
= E.tr[fTFQY'YQFf] — 2E.tr[ fTFQY'5] + E. tr[57 7]



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

L=|WF=Ylz+7IWlz, Y=VeVX) F=fWX)

W#=YOF', Q=F"F+yl)"

Consider an unseen test point X, with random features

~/

f = f(W,%) and targets § = V,g(V,%).

Eje = EcIW*f =5l = Ectr{(YOFTf = 5)T(YQF'f = )]
= E;tr[fTFQY'YQF'f] = 2. tr[fT FOY"5] + E; tr[y" 7]
Now, utilize “strong universality" to apply the linearization,

Y—)Yli”E\/ZgVQV1X+\/ng—CszB F— F"=\/{WX+/n—CA

?%ili”z\/ZszVliﬂ/ng—Cg Vb foflin=\/EWx+/n—-Ca




LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

E

test

= E.tr[fTFQY'YQF'f] — 2E.tr[ fTFQY'§] + E.tr[' 7]
After applying the linearization,
Y—>Y””E\/28V2V1X+\/ng—(ngzB F— F'" = /LW, X ++/n - A
V= IS\ JLVViE fn =G Vb f = \EW 4 Ca
The expectations over V,, V,, B, I;, d are trivial because

0 — (F'™TFlin 4 yIy™' = (/WX + /= CATGEWX +1/1—CA)) ™

depends only on W, X, A.




LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

After applying linearization and performing the trivial
expectations, the result can be written as

Etest — Zi tr[RiQSiQ]+ Zi Z‘I’[TZQ]

where R;, S, T; are low-order polynomials in W, X, A.
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expectations, the result can be written as
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where R;, S, T; are low-order polynomials in W, X, A.

Q: How to evaluate the trace of a rational function of
random matrices?



LINEARIZATION PT 2: THE LINEAR PENCIL

STUDENT-TEACHER KERNEL REGRESSION IN HIGH DIMENSIONS

After applying linearization and performing the trivial
expectations, the result can be written as

Etest — zi tr[RiQSiQ]+ Zi Z‘I’[TZQ]

where R;, S, T; are low-order polynomials in W, X, A.

Q: How to evaluate the trace of a rational function of
random matrices?

A: Linearization + operator-valued free probability



LINEARIZATION PT 2: THE LINEAR PENCIL

RATIONAL FUNCTIONS AS BLOCK MATRIX OPERATIONS

Any rational function of non-commutative variables can be
represented in terms of the inverse of a matrix whose
entries are linear in the variables.

Ry, ..., x) =u'M 1y, M = My+ ZiMixi
This representation is called the linear pencil.

Constructive proof by induction: manifestly true for k =1,

and higher k follow if the representation is closed under

addition, multiplication, and inversion. These follow from
Schur complement formula.



LINEARIZATION PT 2: THE LINEAR PENCIL

EXAMPLE OF LINEAR PENCIL

Consider the resolvent as a functionin W, X, A,

O = (F'"TFm — ;D=1 = (WX + AT (WX +A) —z)7!
(a0 AT X7 o) (1

~A I 0 -w| |0
o -wl' 1 0 0
-x 0o o 1) \0

=u'Mv=00 0 0 0)




LINEARIZATION PT 2: THE LINEAR PENCIL

EXAMPLE OF LINEAR PENCIL

Consider the resolvent as a functionin W, X, A,

O = (F'"TFm — ;D=1 = (WX + AT (WX +A) —z)7!
(.0 AT xT o \ (]

~A I 0 -w| |0
o -wl' 1 0 0
-Xx o o 1) \0)

=u'Mv=00 0 0 0)

M is linearinthe W, X, A:

(—z1 00 0) (0 o0 x"0) (0O 0 0 O0) (o0 AT 0 0)
w| 0 100l Jo oo of,]0 OTO—W+—AOOO
0 017 0 o 0 0o ol lo =wlo o 0 0 0 0
L0 0017) \-=x0 00 o o o o) Lo o oo,

but the additive terms are not free, owing to the block structure.



LINEARIZATION PT 2: THE LINEAR PENCIL

EXAMPLE OF LINEAR PENCIL

However, we can view M as a linear function of the W, X, A with
coefficients in M,(C)

\

N

—z2 000 0 0 0 0) (0 01 0
0 100 0 00 0 000 0|_ .,

M= I X X
0 010l o 000000 0of®
\O 001) \—1000) \OOOO)
(0 0 0 0) (0 0 0 0) (01 0 0) (01 0 0)
000 —I 0 0 00 ~ 1o o0 o0 o 000 O0|_ -+

W W A A

o oo ol®" o 210 0l®" Tlooo ol®*T|o 00 of®
000 0 0 0 0 0 0 00 0 0 00 0

\

and then freeness can be salvaged, but one must account for the
non-commutativity of the coefficients in M,(C)



LINEARIZATION PT 2: THE LINEAR PENCIL

GENERALIZATION ERROR

Kernel Regression, np = n1 =m Kernel Regression, np = ny =m
Tanh-Student, Linear-Teacher Tanh-Student, Tanh-Teacher
20 20
I i log1o(y)
-1
1.5F 1.5F
i -2
] i)
LlJ 1 0 — Lu 1 0 -
(%) L %2) -3
= i =
0.5+ 0.5 -4
-5
| L L | L L MR | L L | L L = . | L L i i L L MR | L L M| L L | L L .. .|
1 10 100 1000 104 1 10 100 1000 104



LINEARIZATION PT 2: THE LINEAR PENCIL

GENERALIZATION ERROR

MSE

MSE

Kernel Regression, np = m
Tanh-NN, Linear-Teacher

20
1.5
1.0
0.5
0‘0- ] L L PR | L " PR | P
0.01 0.10 1 10 100
Ny/m
Kernel Regression, np = m/2
Tanh-NN, Linear-Teacher
20
151
1.0
0.5
0.0- L L L TR S | L L T S R I | |
0.01 0.10 1 10 100
Ni/m

MSE

MSE

20

1.0

0.5

Kernel Regression, np = m
Tanh-NN, Tanh-Teacher

0.0

20

151

0.5

0.0

0.10 1 10

Ny/m

Kernel Regression, np = m/2
Tanh-NN, Tanh-Teacher

100

0.01

0.10 1 10

Nniy/m

100

log1o(y)
1
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LINEARIZATION PT 3: NEURAL TANGENT KERNEL

FROM KERNELS TO NEURAL NETWORKS AND BACK AGAIN

Now consider a single-layer neural network in which all the
parameters are trained, N(x; 0 = {W;, W, }) = W, f(W,x)
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As the width grows, parameters move less during the course of
gradient descent, i.e. 6(¢) =~ 6(0)



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

FROM KERNELS TO NEURAL NETWORKS AND BACK AGAIN

Now consider a single-layer neural network in which all the
parameters are trained, N(x; 0 = {W;, W,}) = W, f(W,x)

As the width grows, parameters move less during the course of
gradient descent, i.e. 6(¢) =~ 6(0)

This motivates a linear approximation

N(x; 0(1)) ~ N(x; 6(0)) + o (6(r) — 6(0)) + OO(r) — 6(0))~
00 10=0(0)
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LINEARIZATION PT 3: NEURAL TANGENT KERNEL

FROM KERNELS TO NEURAL NETWORKS AND BACK AGAIN

Now consider a single-layer neural network in which all the
parameters are trained, N(x; 0 = {W;, W,}) = W, f(W,x)

As the width grows, parameters move less during the course of
gradient descent, i.e. 6(¢) =~ 6(0)

This motivates a linear approximation
N(x; 0(1)) = Ny + Jy(0(r) — 6(0))
The dynamics are determined by the Neural Tangent Kernel

O=JyJy=0,+0,=(F)DyFOoX'X+F'F F' = f(W,X)



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

NEURAL TANGENT KERNEL

The offset N, contributes unnecessary variance. Can set N, = 0
by subtracting two copies of the model with same initialization

|
NVR(X; {91, 92}) — $<N(X, 91) — N(xa 62)) Hl(o) — 92(0)

NR=0, " =0



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

NEURAL TANGENT KERNEL: SECOND-LAYER KERNEL

The component of the kernel from the second layer is the same
random features kernel studied before, ®, = K = F'F

It has non-trivial random matrix behavior in the high-
dimensional limit when ny ~ n; ~ m



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

NEURAL TANGENT KERNEL: FIRST-LAYER KERNEL

The first layer kernel has a Hadamard product structure,
O, = (F’)TDWZF’ ® X! X. It has two non-trivial scaling regimes:

1. Linearly overparameterized (nyn, ~ m)
e Fluctations of (F’)TDW2F’ are important

e n eigenvalues of O(n) and n? of O(1)

2. Quadratically overparameterized (n; ~ m)
e Only the mean of (F’)TDW2F’ is important
¢ O, 20" =cl+c,X"X



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

QUADRATIC OVERPARAMETERIZATION

NNY=

0.100 |

0.010 |

0.001 |

NTK Kernel Regression, no/m = 1/4, y = 107°
Tanh-NN, Linear-Teacher

0.010

0.100 1 10 100 1000
nl/m



LINEARIZATION PT 3: NEURAL TANGENT KERNEL

QUADRATIC OVERPARAMETERIZATION

The network can be too overparametrized

NTK Kernel Regression, ng/m = 1/4, y = 107°
Tanh-NN, Linear-Teacher

14 — — K=0,R
i ‘\\
[ \ —_—
L AN @
\
| \\
0.100 \
r \
- A
I \
I \
\
0.010 | \
r \
- \
I 1
1
’ i
0.001 | I
[ |

0.010 0.100 1 10 100 1000
nl/m

NY=




LINEARIZATION PT 3: NEURAL TANGENT KERNEL

QUADRATIC OVERPARAMETERIZATION

Reducing the variance helps, but a peak emerges

NTK Kernel Regression, ng/m = 1/4, y = 107°
Tanh-NN, Linear-Teacher
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LINEARIZATION PT 3: NEURAL TANGENT KERNEL

TWO OVERPARAMETERIZATION SCALES

NTK Kernel Regression, no/m =1/4, y = 1078

Tanh-NN, Linear-Teacher
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LINEARIZATION PT 3: NEURAL TANGENT KERNEL

TWO OVERPARAMETERIZATION SCALES

NTK Kernel Regression, ng/m = 1/4, y = 107°
Tanh-NN, Linear-Teacher
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LINEARIZATION PT 3: NEURAL TANGENT KERNEL

TWO OVERPARAMETERIZATION SCALES

NTK Kernel Regression, no/m =1/4, y = 1076
Tanh-NN, Linear-Teacher
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FREE PROBABILITY

CUMULANTS AND CLASSICAL INDEPENDENCE

The cumulant generating function K generates connected
correlation functions via the relation

K(fl, cens tn) — log [E ez;l:lfiXi

The cumulants k are defined by the moments via a sum

over partitions 7:

E[X,+X,] = ) K[X,, ... X,] kXX = [ ]«X i€ B)

T Bern
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CUMULANTS AND CLASSICAL INDEPENDENCE

The cumulant generating function K generates connected
correlation functions via the relation

K(fl, cens tn) — log [E ez;l:lfiXi

The cumulants k are defined by the moments via a sum

over partitions 7:

E[X,+X,] = ) K[X,, ... X,] kXX = [ ]«X i€ B)

T Bern
For example,

n=1: [E[X] = «[X|]
n=2: E[X\X,] = «[X;X;5] + x| X, [«[X,]



FREE PROBABILITY

CUMULANTS AND CLASSICAL INDEPENDENCE

n=3: E[X|X,X3] = k[ X, X5X;5] + [ X, X5 [«[ X5] + «[ X X5]x[X;]
+ k[ X5 X5k X ] + k[ X ]x[ X5 k[ X5]

n=4: [E[XX,X;X,] = [ X, X5X:X,] + «[ X, X, X5 [ X, ] + &

+K
+K
+K
+K

X X5 X k[ X5 ] + k[ X5 X5 X, 1k [ X ] + k[ XX ]
XXy + k[ X X, [ X5 X5] + k[ X5X,

X1 X3
X5 Xy

X1 X3

K
K
K

X Ik[X5] + k[ X X5]k[ X ][ X,] + «

K
K

X1 X5 X, K[ X5]
X3X,]

:X1]K[X2]

:X1X4]K[X2]K[X3]
X0 k[ Xy ] + k[ X X5 k[ X5k [ X, ] + k[ X Ix[ X5 k[ X5 k[ X5 ]

The mixed cumulants vanish for independent random

variables
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Free cumulants: sum over non-crossing partitions 7 € NC(n):

EX;X]= Y XX, kX, .. X] = | | <X : i € B]

neNC(n) Bexn

For example, at n = 4, the partitions are
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FREE PROBABILITY

FREE CUMULANTS AND FREE INDEPENDENCE

Free cumulants: sum over non-crossing partitions 7 € NC(n):

EX;X]= Y XX, kX, .. X] = | | <X : i € B]

neNC(n) Bexn

For example, at n = 4, the partitions are

1 2 1.2 1\2 1 2 1 I
4° "3 4° "3 4° 3 4 "3 4°
Crossing

1/2 . 1><2
4 "3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
4 ‘3 ' 4° ‘3



FREE PROBABILITY

FREE CUMULANTS AND FREE INDEPENDENCE

Free cumulants: sum over non-crossing partitions 7 € NC(n):

EX;X]= Y XX, kX, .. X] = | | <X : i € B]

neNC(n) Bexn

For example, at n = 4, the non-crossing partitions are

1 2 1 2 1\2 1I 2 1 I
4 3 4 3 4° 3 4 3 4
1_/2 1 . 1 2 1I |
4 "3 4 3 4 3 4
1 2 1 2 1 2 1 2 1




FREE PROBABILITY

FREE CUMULANTS AND FREE INDEPENDENCE

Free cumulants: sum over non-crossing partitions 7 € NC(n):

EX;X]= Y XX, kX, .. X] = | | <X : i € B]

neNC(n) Bexn

For example, at n = 4, the free cumulants obey

n=4: [E[X, X,X3:X,] = k[ X, X, XX, ] + k[ X X, X5]x[ X, ] + x[ X X, X, k[ X5]

+ k[ X X5 X, k[ X5 ] + k[ X5 X5X, k[ X ] + [ X, X5 k[ X5X, ]
XXX + KX X k[ X X5] + k[ X5 X, k[ X Ix[ X ]

+ k[ X X, [ X I X5] + k[ X5 X5k [ X Ix[ X, ] + x[ X X, k[ X5 x[X5]

+ k[ X X5 ]k X5 k[ X, ] + k[ X X0 k[ X5]x[ X, ] + k[ X [ X5 ]x[ X5 1k [ X5]

The mixed free cumulants vanish for freely independent
random variables.
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Given free random matrices A and B, can add and multiply using
auxiliary objects: the R-transform and the S-transform
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R-transform: zG(z) = 1 + R(G(2))G(2)
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Pp\t) = Upll) = Rp



FREE PROBABILITY

R-TRANSFORM AND S-TRANSFORM

Given free random matrices A and B, can add and multiply using
auxiliary objects: the R-transform and the S-transform

R-transform: zG(z) = 1 + R(G(2))G(2)

psad) = G4(2) = Ry ~

() > Gu(2) > Ro — Ry+ Rg =Ry, g = Gy 5g(2) = paip(d)
Pp\t) = Upll) = Rp

S-transform: G(z) = S(zG(z2) — 1)(z(G(z) — 1))

pAd) = Gu(2) = S, ~

5158 = Sap = Gap(2) = papd)
pp(d) = Gg(z2) = Sp
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Operator-valued R-transform obeys same relation as scalar case:
bG(b) = I+ R(G(b))G(b)

If A and B are free over M (C), their operator-valued
R-transforms add
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OPERATOR-VALUED FREENESS

Operator-valued freeness is analogous to standard freeness, but
the cumulants are operator-valued so the ordering matters.

Standard: E[X, X, X;] = [ X, X, X5] + [ X X5 k[ X5] + «[ X, X;5]x[ X, ]
+ k[ X5 X5 k[ X, ] + k[ X ][ X5 k[ X;5]

Operator: E[XX,X;3] = k[ XX, X5] + k[ X, Xok[X5]] + x[ X k[ X5]X]]
+ x| k[ X 1X5, X5] + k[ X ]x[ X5 k[ X5]
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= True for the linear pencils needed for the test error
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