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Definition. Wigner matrices are N x N symmetric matrices W = (W;;);;

such that,
1

E[W;;]=0,  E[(W)?] =~
(Wl =0, E[(Wiy)*] = 1
and {I/Vj,j}igj are iid.

An important example is when W;; are all Gaussian. This is the Gaussian
Orthogonal Ensemble (GOE).

e Together with sample covariance matrices X X (e.g., where {X;;};; are
iid) are a basic model of random matrix theory
e Used as “null” statistical models or pure noise (spiked models W + voT
are well-studied)
o Proposed by E. Wigner to model distribution of energy levels of complex
quantum systems
o Universality of spectral quantities (eigenvalues, eigenvectors) in the limit
N — o0 of interest to mathematicians
Universality: As N — oo behavior of eigenvalues and eigenvectors does not
depend on the choice of distribution of W;;



WWEACIELENISl  Semicircle law

Wigner's semicircle distribution,

hm 25)\ ) ( «/4 E?),dE =: ps.(E)dE

almost surely.
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“Random matrix behavior” for local statistics:

Eigenvectors are delocalized:
lJuil|oo < N72

(Haar-distributed on O(N) for GOE)

Wigner surmise* for eigenvalue gaps:

PN (A1 — ) € ds] ~ e/t i

Tracy-Widom distribution for extremal eigenvalues:

lim N?3(A\; —2) = TW,
N—>oo

e Limiting distributions first found for Gaussian ensembles using explicit

formulas
e Universality for general Wigner matrices proven by many authors
[Erd6s-Schlein-Yau-Yin, Tao-Vu, Soshnikov, Péché...]



Sparse random matrices [VEEEE

Models of sparse random matrices:
o Let B = (B;j)i<; be a symmetric matrix of iid Bernoulli random variables
with P[B;; = 1] = p, with p = (pn )N
e Sparse Wigner matrices: Hadamard product H = ﬁB o W, given by
H’ij = ﬁBUVVZJ
e Scaled and centered Erd6s-Rényi adjacency matrices: A = ﬁB,
and A = A —E[A]. (Note that B is the adjacency matrix of G(N,p).)
Notation: d = pN, is expected degree of a vertex in G(INV,p). d is the mean
number of non-zero entries in a row of H.

Scaling:

N
Z [(BoW)?] = E[Tr(BoW)? ZE [BLWZ] = N*(pN~') = pN.

o We rescale by \% to get a matrix with N eigenvalues that are each O(1)



Sparse random matrices [EREEHIENH

Questions about sparse random matrices:
e For what range of p do random matrix statistics survive (i.e., the limiting
distributions found for Wigner matrices)?

e If not, what new spectral phenomena emerge?
e What is the behavior at the spectral bulk and spectral edges?

e What is the origin of any new behavior?



Sparse random matrices (RIS

p<pe p=pc P> pe

Percolation transition at p, =
e For d = Np < 1 all connected components of G(N,p) are small

e For d = Np > 1, a giant component emerges containing a macroscopic
fraction of the vertices.

Second transition at pN = log(N), where all vertices are in the giant
component.

Image: HSE



Limit of large degree d = Np —

s
— cawooa)

As long as d = Np — o0 as N — o, ==

one recovers the semicircle distribution.

Follows from original proof of Wigner,

however rate of convergence is slower

than for Wigner matrices. B

e If d = Np — o0 at any polynomial rate, then universality holds for
eigenvalues in the bulk (i.e., Wigner surmise for N(\; 11 — \;))
[Huang-L.-Yau, 2015]

o All eigenvectors are delocalized as long as d = Np = C'log(N)
[He-Knowles-Marcozzi, 2018].

Results hold for both sparse Wigner matrices and adjacency matrices of sparse
random graphs such as G(NV, p).

Can allow for inhomogeneous graphs (block models, etc.) and d-regular graphs
[Bauerschmidt-Knowles-Huang-Yaul].

Image: Vu et. al



Sparse random matrices Spectral measure for finite d

Limiting spectral measure for G(N, p) with d = Np = « fixed

0=2.01

No explicit formula for limit

Density of states conjectured to extend past +2
as p(B) ~ E~20F

Continuous part iff & > 1 [Bordenave-Sen-Virag,
2013]. E =0 is in the continuous spectrum iff
a > e [Coste-Salez, 2018]

Mobility edge conjectured for o > 1.4; emergence
of delocalization and random matrix statistics

Dense point spectrum

Delta functions from
disconnected finite trees as
well as those grafted onto
giant component. Mass is
exponentially suppressed.

giant
component

Images: Bauer, Golinelli



Behavior of extremal eigenvalues for slowly growing d = p/N

Let d = pN = blog(N). There is a b, such that [Knowles, et. al, 2019]:

o If b > by, then the extremal eigenvalues converge to the edge of the
semicircle distribution +2

o If b < by, then the extremal eigenvalues are order +/log(NV).

e Exact transition is model-dependent. In the case of Erd6s-Rényi,
by = mg(ﬁ (different from the second transition).

Extremal eigenvalues arise from vertices
x of largest degree d,. An elemen-
tary tree calculation shows an eigen-
value A > 2 and localized eigenvector
arise iff d, > 2d.

Existence of b, follows from degree dis-
tribution

Image: Knowles et.

al



Sparse random matrices Localized eigenvectors for large-degree vertices

Consider a vertex x of degree d,, with each neighbor being the root of a
d-regular tree. Let a, = %=

=,
0 A/ g

Apply Gram-Schmidt to A starting /o, 0 1

with 1,. In the GS basis and in a M= 1 0 1

neighbourhood of the vertex =, A 1 0 1

can be written as M

The vector ug = 1,

- . 1/2 - 1 1/2 |
UL = po— , Ujp1 = p— U

is an eigenvector for eigenvalue \/571 and decreases exponentially iff
x
de _

&=y > 2.




Sparse random matrices Moderately growing d

Tracy-Widom distribution for moderately growing d

In the case that the eigenvalues converge to the edges of the semicircle
distribution do we have the N~2/3 Tracy-Widom fluctuations?

Theorem. [Erdés-Knowles-Yau-Yin, 2011]. Let d = pN » N?3. Then,

lim N?3(\ —2) = TW,

N—

Theorem. [Lee-Schnelli, 2017]. Let d = pN » N3, Let,

S4
L=2+—
+Np

where s, is the fourth cumulant of the matrix entries. Then,

lim N?3(\; — L) = TW;.
N—>

o The correction 3 > N—2/3 as soon as d « N2/3

e Formula for L agrees with nonrigorous expansion of DoS of
[Rodgers-Dominicis, 1988].



Sparse random matrices Moderately growing d

[ Theorem. [Huang-L.-Yau, 2019]. Let d = pN » N?/. Define, )
. 2
L=t ot T T X zle(H‘zlv>
Then, we have the joint convergence of
(N0 = L= x), Ny/px)
to independent TW; and N(0, s4) random variables. In particular, for d =
\CNI/Zj’ N?/3(\; — L) converges to TW; + Gaussian. )

e For d « N'/3 the fluctuations of y » N2/
e The random variable x can be interpreted as number of edges in ER graph

e For smaller d we expect more higher order deterministic and random
quantities.



Sparse random matrices Moderately growing d

e '\ can be interpreted as an
extensive quantity measuring
system size.

e lts fluctuations cause the / AN
semicircle density to be stretched / \
(as opposed to shifted)

e In contrast to extremal eigenvalues !

of d-regular graphs, which are &— 2(L + x) —_
expected to have Tracy-Widom

fluctuations down to d = 3.
e In particular, \; shifts by +x whereas A\ shifts by —y.

e Can also be detected in the behavior of single eigenvalue fluctuations in
the spectral bulk.



ELEIECWED TNV IEI  Single eigenvalue fluctuations

Consider eigenvalues in the bulk: we restrict to eigenvalue indices i so that
eN <i<(1—-eN).

For Wigner matrices W,

lim 10Z<N>WW) —ED(W)]) = N0, 0%)

e First proven for Gaussian ensembles by [Gustavsson, O'Rourke].
o Extended to general Wigner matrices by [L.-Sosoe, Bourgade-Mody]
For sparse ensembles, away from E = 0, [He, 2018]

(Nvp)(Ai — E[M]) = NV (0,62).

lim
N—
Furthermore correlation of two eigenvalues is +1.

However, eigenvalue gaps retain the universal GOE fluctuations,

N(Xiz1 — A;) ~ Wigner surmise.



Microscopic universality Dyson Brownian motion

Dyson Brownian motion as the origin of microscopic fluctuations

How do we prove results about the microscopic fluctuations?

o Use perturbation theory to compare H with

H, = H + VG

where G is a Gaussian matrix. This adds some “noise.”

e M, is the solution to a stochastic process known as Dyson Brownian
motion: “Brownian motion in the space of matrices”

o Prove fast mixing time of H, to the invariant Gaussian measure

In our example, H is a sparse matrix. It's fluctuations give rise to the Gaussian
term, and G gives rise to the Tracy-Widom distribution.



Microscopic universality Dyson Brownian motion

In conclusion:
e As p — 0 at faster rates as N — o rich spectral features emerge

e Spectral universality in the bulk is quite robust; holds as long as
pN = N°¢.

o Extremal behavior is more complicated; transition at pN = N'/3 from
Tracy-Widom to Gaussian fluctuations



Microscopic universality Dyson Brownian motion

Thank you for your attention!
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