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Wigner matrices Definition

Definition. Wigner matrices are N ˆN symmetric matrices W “ pWijqij

such that,

ErWijs “ 0, ErpWijq
2s “

1

N

and tWijuiďj are iid.

An important example is when Wij are all Gaussian. This is the Gaussian
Orthogonal Ensemble (GOE).

• Together with sample covariance matrices XXT (e.g., where tXijuij are
iid) are a basic model of random matrix theory

• Used as “null” statistical models or pure noise (spiked models W ` vvT

are well-studied)

• Proposed by E. Wigner to model distribution of energy levels of complex
quantum systems

• Universality of spectral quantities (eigenvalues, eigenvectors) in the limit
N Ñ8 of interest to mathematicians

Universality: As N Ñ8 behavior of eigenvalues and eigenvectors does not
depend on the choice of distribution of Wij



Wigner matrices Semicircle law

Wigner’s semicircle distribution,

lim
NÑ8

1

N

N
ÿ

i“1

δλipW qpEqdE “
1

2π

a

p4´ E2q`dE “: ρscpEqdE

almost surely.



Wigner matrices Local statistics

“Random matrix behavior” for local statistics:

Eigenvectors are delocalized:

||ui||8 À N´1{2

(Haar-distributed on OpNq for GOE)

Wigner surmise* for eigenvalue gaps:

PrNpλi`1 ´ λiq P dss „
πs

2
e´πs

2
{4

Tracy-Widom distribution for extremal eigenvalues:

lim
NÑ8

N2{3pλ1 ´ 2q “ TW1

• Limiting distributions first found for Gaussian ensembles using explicit
formulas

• Universality for general Wigner matrices proven by many authors
[Erdős-Schlein-Yau-Yin, Tao-Vu, Soshnikov, Péché...]

Image: [Knowles et. al]



Sparse random matrices Models

Models of sparse random matrices:

• Let B “ pBijqiďj be a symmetric matrix of iid Bernoulli random variables
with PrBij “ 1s “ p, with p “ ppN qN .

• Sparse Wigner matrices: Hadamard product H “ 1?
pB ˝W , given by

Hij “
1?
pBijWij .

• Scaled and centered Erdős-Rényi adjacency matrices: A “ 1?
Np
B,

and Ã “ A´ ErAs. (Note that B is the adjacency matrix of GpN, pq.)

Notation: d “ pN , is expected degree of a vertex in GpN, pq. d is the mean
number of non-zero entries in a row of H.

Scaling:

Er
N
ÿ

i“1

λipB ˝W q
2s “ ErTrpB ˝W q2s “

ÿ

i,j

ErB2
ijW

2
ijs “ N2ppN´1q “ pN.

• We rescale by 1?
p to get a matrix with N eigenvalues that are each Op1q



Sparse random matrices Problems

Questions about sparse random matrices:

• For what range of p do random matrix statistics survive (i.e., the limiting
distributions found for Wigner matrices)?

• If not, what new spectral phenomena emerge?

• What is the behavior at the spectral bulk and spectral edges?

• What is the origin of any new behavior?



Sparse random matrices Topology

Percolation transition at pc “
1
N :

• For d “ Np ă 1 all connected components of GpN, pq are small

• For d “ Np ą 1, a giant component emerges containing a macroscopic
fraction of the vertices.

Second transition at pN “ logpNq, where all vertices are in the giant
component.

Image: HSE



Sparse random matrices Spectral properties with d Ñ 8

Limit of large degree d “ NpÑ8

As long as d “ Np Ñ 8 as N Ñ 8,
one recovers the semicircle distribution.
Follows from original proof of Wigner,
however rate of convergence is slower
than for Wigner matrices.

• If d “ NpÑ8 at any polynomial rate, then universality holds for
eigenvalues in the bulk (i.e., Wigner surmise for Npλi`1 ´ λiq)
[Huang-L.-Yau, 2015]

• All eigenvectors are delocalized as long as d “ Np ě C logpNq
[He-Knowles-Marcozzi, 2018].

Results hold for both sparse Wigner matrices and adjacency matrices of sparse
random graphs such as GpN, pq.

Can allow for inhomogeneous graphs (block models, etc.) and d-regular graphs
[Bauerschmidt-Knowles-Huang-Yau].

Image: Vu et. al



Sparse random matrices Spectral measure for finite d

Limiting spectral measure for GpN, pq with d “ Np “ α fixed

• No explicit formula for limit

• Density of states conjectured to extend past ˘2
as ppEq „ E´2αE

• Continuous part iff α ą 1 [Bordenave-Sen-Virag,
2013]. E “ 0 is in the continuous spectrum iff
α ą e [Coste-Salez, 2018]

• Mobility edge conjectured for α ą 1.4; emergence
of delocalization and random matrix statistics

• Dense point spectrum

• Delta functions from
disconnected finite trees as
well as those grafted onto
giant component. Mass is
exponentially suppressed.

Images: Bauer, Golinelli



Sparse random matrices Extremal eigenvalues

Behavior of extremal eigenvalues for slowly growing d “ pN

Let d “ pN “ b logpNq. There is a b˚ such that [Knowles, et. al, 2019]:

• If b ą b˚, then the extremal eigenvalues converge to the edge of the
semicircle distribution ˘2

• If b ă b˚, then the extremal eigenvalues are order
a

logpNq.

• Exact transition is model-dependent. In the case of Erdős-Rényi,
b˚ “

1
logp4q´1 (different from the second transition).

Extremal eigenvalues arise from vertices
x of largest degree dx. An elemen-
tary tree calculation shows an eigen-
value λ ą 2 and localized eigenvector
arise iff dx ą 2d.

Existence of b˚ follows from degree dis-
tribution

Image: Knowles et. al



Sparse random matrices Localized eigenvectors for large-degree vertices

Consider a vertex x of degree dx, with each neighbor being the root of a
d-regular tree. Let αx “

dx
d .

Apply Gram-Schmidt to A starting
with 1x. In the GS basis and in a
neighbourhood of the vertex x, A
can be written as M

M “

¨

˚

˚

˚

˚

˚

˝

0
?
αx?

αx 0 1
1 0 1 . . .

1 0 1
...

˛

‹

‹

‹

‹

‹

‚

The vector u0 “ 1,

u1 “

ˆ

αx
αx ´ 1

˙1{2

, ui`1 “

ˆ

1

αx ´ 1

˙1{2

ui

is an eigenvector for eigenvalue αx?
αx´1

, and decreases exponentially iff
dx
d “ αx ą 2.



Sparse random matrices Moderately growing d

Tracy-Widom distribution for moderately growing d

In the case that the eigenvalues converge to the edges of the semicircle
distribution do we have the N´2{3 Tracy-Widom fluctuations?

Theorem. [Erdős-Knowles-Yau-Yin, 2011]. Let d “ pN " N2{3. Then,

lim
NÑ8

N2{3pλ1 ´ 2q “ TW1

Theorem. [Lee-Schnelli, 2017]. Let d “ pN " N1{3. Let,

L “ 2`
s4
Np

where s4 is the fourth cumulant of the matrix entries. Then,

lim
NÑ8

N2{3pλ1 ´ Lq “ TW1.

• The correction s4
Np " N´2{3, as soon as d ! N2{3

• Formula for L agrees with nonrigorous expansion of DoS of
[Rodgers-Dominicis, 1988].



Sparse random matrices Moderately growing d

Theorem. [Huang-L.-Yau, 2019]. Let d “ pN " N2{9. Define,

L “ 2`
s4
Np

`
s6

pNpq2
´

9

4

s24
pNpq2

, χ :“
1

N

ÿ

i,j

ˆ

H2
ij ´

1

N

˙

Then, we have the joint convergence of

´

N2{3pλ1 ´ L´ χq, N
?
pχ

¯

to independent TW1 and N p0, s4q random variables. In particular, for d “
cN1{3, N2{3pλ1 ´ Lq converges to TW1 ` Gaussian.

• For d ! N1{3 the fluctuations of χ " N´2{3

• The random variable χ can be interpreted as number of edges in ER graph

• For smaller d we expect more higher order deterministic and random
quantities.



Sparse random matrices Moderately growing d

• χ can be interpreted as an
extensive quantity measuring
system size.

• Its fluctuations cause the
semicircle density to be stretched
(as opposed to shifted)

• In contrast to extremal eigenvalues
of d-regular graphs, which are
expected to have Tracy-Widom
fluctuations down to d “ 3.

2pL` χq

• In particular, λ1 shifts by `χ whereas λN shifts by ´χ.

• Can also be detected in the behavior of single eigenvalue fluctuations in
the spectral bulk.



Sparse random matrices Single eigenvalue fluctuations

Consider eigenvalues in the bulk: we restrict to eigenvalue indices i so that
εN ď i ď p1´ εNq.

For Wigner matrices W ,

lim
NÑ8

N
a

logpNq
pλipW q ´ ErλipW qsq “ N p0, σ2q

• First proven for Gaussian ensembles by [Gustavsson, O’Rourke].

• Extended to general Wigner matrices by [L.-Sosoe, Bourgade-Mody]

For sparse ensembles, away from E “ 0, [He, 2018]

lim
NÑ8

pN
?
pqpλi ´ Erλisq “ N p0, σ̂2q.

Furthermore correlation of two eigenvalues is ˘1.

However, eigenvalue gaps retain the universal GOE fluctuations,

Npλi`1 ´ λiq „ Wigner surmise.



Microscopic universality Dyson Brownian motion

Dyson Brownian motion as the origin of microscopic fluctuations

How do we prove results about the microscopic fluctuations?

• Use perturbation theory to compare H with

Ht “ H `
?
tG

where G is a Gaussian matrix. This adds some “noise.”

• Ht is the solution to a stochastic process known as Dyson Brownian
motion: “Brownian motion in the space of matrices”

• Prove fast mixing time of Ht to the invariant Gaussian measure

In our example, H is a sparse matrix. It’s fluctuations give rise to the Gaussian
term, and G gives rise to the Tracy-Widom distribution.



Microscopic universality Dyson Brownian motion

In conclusion:

• As pÑ 0 at faster rates as N Ñ8 rich spectral features emerge

• Spectral universality in the bulk is quite robust; holds as long as
pN ě Nε.

• Extremal behavior is more complicated; transition at pN “ N1{3 from
Tracy-Widom to Gaussian fluctuations



Microscopic universality Dyson Brownian motion

Thank you for your attention!
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